
1

An Empirical Study of Transition and

Adoption of the Scrum Framework in

Legacy Products

Peter Howard Coles Yijun Yu Hugh Robinson

Computing Department, The Open University, United Kingdom

6/28/2011

Abstract

Agile1 software development (ASD) methods attempt to

foster agility as one dimension of the complex activity of

delivering software solutions to gain business advantage in

turbulent environments. It is however unknown whether

such methods improve code delivery in software houses

producing legacy mainframe software where the source

code is not in an object-oriented programming language. In
this paper, we evaluate whether there is any impact on the

development process by the adoption of the Scrum

framework, using a combination of quantitative and

interpretive analysis on empirical data. We first test the

significance of the code metrics committed by the

developers before and after the transition and adoption.

Using in-depth knowledge of the commercial project, we

then interpret the results of statistical tests on the null

hypothesis that the metrics show no significant change. The

study has been conducted using real life empirical data

gathered from the development of a sample commercial

legacy product.

1 In a software development context, confusion can occur when referring to the

term ‘agile’ (with a small ‘a’) and ‘Agile’ (with a capital ‘A’). In the interests of

clarity, we use ‘agile’ as the dictionary definition of the term – ‘able to move

quickly and easily; able to think and understand quickly’

http://oxforddictionaries.com; in contrast, ‘Agile’ (software development) refers

to a specific set of processes, techniques and stances that have evolved and are

underpinned by, the values of the non-profit organization, the Agile Alliance,

http://www.agilealliance.com.

2

1 Introduction

Agile software development (ASD) methods continue to gain popularity in industrial
settings. Possible reasons for their adoption might include a belief of increasing

productivity while maintaining or improving quality – i.e. ‘doing more with

less’ [16], ‘gut reactions’/‘jumping on the bandwagon’ [24] or pressure to adopt a

new technology or idea [5]. Whilst there is anecdotal evidence published on ASD

methods including descriptive articles and lessons learned, e.g., [23, 19], there are not

many empirical studies that focus on Agile adoption [15].

Typically, the Agile sweet-spot is the place where the software industry as a

whole has the most experience with using Agile methods. Such software is normally

developed in an object-orientated programming language for web-based application
domains rather than in assembly language for legacy systems. Its developers are

normally close to the eventual end-users or actual customers and team sizes are

usually smaller than a dozen people [13] . On the other hand, applying Agile

processes to legacy systems, whether within maintenance or as new development,

could raise numerous issues. Legacy systems generally are difficult to refactor,

restructure [6] or reengineer [12, 25] in order to accommodate Agile replacements

that need to build capability in increments. Cost may not be justified or resources may

be constrained for large organisations running ‘lean and mean’. Approaches to Agile

adoption range from a large-scale, top-down a-la-carte forced approach, ironically

portrayed below by Scott Adams in Figure 1, or attempting cultivation of ground-up

adoption to garner grassroots acceptance [10].

Figure 1: The Pointy-Haired Boss Agile adoption approach

In this study, the practices of the Scrum framework were adopted by a legacy

software development team in a large company. How does the adoption change the

work outputs of legacy software developers? To assess this question, a clear

understanding of the maintenance development context is required in terms of

organisation, product, process, people and case selection.

2 Context of our empirical study

Organisation Vendor01 is an established global independent IT management and

optimization software company based in the US. It has customers in the Forbes

Global 2000, government organizations, educational institutions and many other
global companies. Like most large organisations, the company management is

hierarchical.

3

Product and Technology The product Product01 chosen for the pilot case study

can be regarded as legacy, having approximately 18 years of continuous evolution

and adaption of the source code. This product forms a large inter-related product suite

Suite01 addressing all facets of mainframe database management and optimization;

looking forward, there is potential to study over 60 products of diverse size in our

future research. Product01 is a high-speed utility using data-processing techniques to

unload mainframe database tables while maintaining system performance. It provides

formatting options that make the output data available in a chosen format for
immediate use in other applications or databases. The product is written in High

Level Assembler (HLASM), an IBM licensed program running on the mainframe

z/OS platform that enables programme development of subroutines and functions not

typically provided in other symbolic languages, such as COBOL, FORTRAN, and

PL/I [11].

Process and time gaps The adoption of the Agile Scrum framework officially

begain at the first Scrum sprint – 30th March 2009. A new release lifecycle for the

product begins, as shown in Figure 2 when the latest post-release production code is

‘snapped’ at point x. Post-release code is the responsibility of a sustaining

engineering team who do not follow Agile practices – these activities are shown by

dark red arrows after the pre-releases. Release ‘A’ is snapped at time x to form

release ‘B’. This new release is the responsibility of the development team following
the Scrum framework – these activities are shown by light green arrows before the

pre-releases. The pre-release phase consists of the normal Scrum rhythms and

practices – new product value is prioritized and developed from the product backlog.

Figure 2: The process changes after the adoption of the Scrum

framework

Company policy dictates that all external customer problems found in earlier releases

are applied and tested to pre-release code. Customers typically run multiple

mainframe database subsystems at different levels of operating system and

maintenance; this leads to multiple post-releases of Product01 requiring maintenance

4

by sustaining engineering. Occasionally, customers require functionality back-fitting

from a newer release to an older release; this can arise for a number of reasons; a

common cause is the risk and effort required by the customer to migrate to new levels

of system and vendor code is prohibitive. Targeted functional provision in older

releases can help mitigate these risks; Vendor01 considers this part of a partnership

relationship with its customers, attempting to balance customer need with internal

resource constraints and costs incurred by supporting multiple post-releases of

Product01. All high-impact fixes are back-fitted to earlier releases regardless of cost.
By analysis of the time stamps of work items, it is possible to track the following

time gaps: PreStgTg or pre-stage time gap tells how long does it take for the

developer to commit the code after they finish the work; StgIntTg or

stage-to-integration time gap tells the time in hours taken to migrate the change to

start the formal testing process; IntPrdTg or integration-to-product time gap tells

how long it took to test the change and migrate it into production as ‘passed’.
Case Selection We are interested in exploring what happens when Scrum is

adopted in an industrial setting and we recognize that case selection is crucial in our

investigations. The effects of the Scrum framework can only be assessed at a high

level of abstraction as there may be many dimensions that come into play that cannot

be controlled [14]. We are attempting to reduce the effect of confounding factors by

selecting a consistent, typical application domain which is actively evolving

(Product01) whose developers Geek01 and Geek02 are selected on basis that they

have detailed organizational and product domain knowledge, and over four decades

experience in the software industry and mainframe technology. Also both developers

have been members of the same Scrum team since adoption. Our case study only

considers time periods for Scrum sprints, that is, pre-release product development
from the product backlog. We only consider pre-release development before the

Scrum transition to improve the validity of our comparisons and reduce confounding.

The official organization date of the first Scrum sprint used in the case studies is 30th

March 2009.

The legacy software products of the company are primarily written in assembler

code. Studies exist that use different metric suites to assess object-orientated code, for

example Sato et al. [22] discuss and evaluate object-orientated metrics from seven

projects with differing approaches of Agile adoption. In non-object-orientated

environments, we draw on over four decades of research into software size (product)

metrics that are grounded in a rigorous approach to measurement theory. We refer the

reader to key texts on measurement theory [29] and software metrics [7]. Our

research follows the principles laid down by these texts and we use program length or
LOC (lines of code), CLOC (commented lines of code) and McCabe [18] (cyclomatic

complexity) metrics as the initial metrics forming our analysis.

3 Results and analysis

3.1 Geek01 Change Nature and Change Timing

We found statistically significant differences (at the 5% significance level) between
the two periods for both the size of the modules changed (Loc - 0.038 significance

level) and the nature (DeltaLoc - 0.013 significance level, TotalChanges - 0.003

significance level) and timing (PreStgTg - 0.000 significance level) of the changes for

5

this developer. Despite the difference in time periods before and after Scrum, Geek01

changed the same number of modules (81); worked on larger modules, some in the

6000 to 8000 LOC range, and wrote 7 new modules summing 4,365 lines in the

Scrum period. The evidence suggests this developers work output seems to have

increased since Scrum adoption. Most module changes remain small in the two

periods (fitting well with Agile methods emphasis on time-boxed incremental

development), however Geek01 produced 5 significantly different changes in the

Scrum period that were over 400 added lines, one of these was over 1,300 added
lines. These 5 changes were also reflected in the code churn metric (TotalChanges)

which was also significantly different; these changes were related to new

functionality delivered into the product. The time taken to commit developed changes

formally into the change control system (PreStgTg) showed a significant increase in

duration before and after Scrum adoption. There is a statistically significant delay for

14 modules which had finished development but were not added to the formal change

control system for QA testing; some changes took between 2 and up to 9 Scrum

iterations before being formally committed. This evidence raises questions about

what ‘delivery’ entails (in a similar view to the Scrum definition of ‘done’ discussed

previously); the change control cycle illustrated in Figure 6 above allows for both

informal testing of code prior to the formal code migration and testing cycle, which

address product integration. It suggests that continuous integration is not practiced.
Geek01 confirmed this view when asked:

I created temporary builds that ... I used during my unit testing and ...

QA testing.

Agile advocates recommend that developers should commit smaller chunks of code
frequently rather than delaying and committing several changes at once. However, we

found no significant difference in cyclomatic complexity of modules changed by

Geek01 before and after Scrum; average McCabe before and after the adoption was

207 and 280 respectively, suggesting there has been no statistically significant change

to the overall complexity of product change for this developer, despite increasing

module complexity in iterations. The increases in McCabe and LOC before and after

adoption suggest that new features are being ‘bolted on’ to the existing design; whilst
average LOC for changed modules increased from 1,728 to 2,462.

3.2 Geek01 Iteration Change Delivery

Scrum iterations are time-boxed - each team member commits to complete agreed
functionality of the product that delivers the highest business value (determined by

the Product Owner) in each Sprint. We wanted to know if this resulted in smoother,

predictable code delivery (Agile sustainable pace). In light of our discussion on the

meaning of ‘delivery’ in the previous section, we look at the iterations where the code

was last changed outside of the change control system - we know this code was later

migrated through the formal change control system and was deployed in production,

but we have found the migration process can span iterations.

6

Figure 3: Geek01 Total Code Churn by Iteration

Figure 3 illustrates the total iteration code churn for Geek01. The delivery pattern is

punctuated showing variable iteration change delivery, contrary to the Agile principle
of sustainable pace. We asked Geek01 to comment on these results:

There is no formal estimating techniques used, this area needs a GREAT

DEAL of improvement.

Agile principles of frequent delivery, sustainability and feedback loops are not in
evidence based on the data distribution shown in Figure 3. Our evidence for this

developer indicate no constant flow of new features into production.

3.3 Geek02 Change Nature and Change Timing

We found statistically significant differences (at the 5% significance level) between
the two periods for the size (Loc - 0.006 significance level) and complexity (Mccabe -

0.021 significance level) of modules changed, but no significant difference in the

nature of the changes. We did find a significant difference in the timing (PreStgTg -

0.000 significance level) of changes for this developer. Geek02 changed 218 modules

before Scrum but only 42 in the Scrum period; Allowing for the difference in time

period before and after Scrum, the evidence suggests this developers work output

seems to have decreased (from a approximate mean of 43 per year to an approximate
mean of 21 changes per year) since Scrum adoption. Geek02 has changed fewer,

more complex modules (the largest having Loc 7,584 and Mccabe 879). When we

interviewed Geek02 concerning the drop in delivery, he complained of distractions

with unrelated sustaining engineering tasks that dominated his development time:

“If I can get away from code reviews for sustaining engineering long

enough to do ANY development of ANY kind, it‟s a winâ€ ¦it may take me

2-3 weeks to get enough time away from sustaining engineering to

actually make progress on ONE project... Nothing ever just gets fixed

without a big cyclical production, and it just sucks off all my time”

7

Geek02 also expressed the view that Geek01 did not perform code reviews for
sustaining engineering and could concentrate on his Scrum commitments:

“Geek01 is VERY organized with his note-taking and recording test

cases, has „very little‟ general interface with sustaining engineering (I

could be wrong...) and REFUSES to EVER do a sustaining engineering

code review”€ •

The time taken to commit Geek02 developed changes formally into the change
control system (PreStgTg) showed a significant decrease since Scrum adoption. In

contrast to Geek01, who changes individual modules, and waits to commit features in

batches, Geek02 ensures all modules involved in a commit have the same date and

then commits.

“If I‟m working on something for awhile, I change the source date stamp

to reflect the date I made a particular change - when I‟m finally settled

on the entire solution, I‟ll „try‟ to make all the change stamps the same

date for all the changes in a commit”

Geek02 Iteration Change Delivery

Figure 4 below illustrates the total iteration code churn for Geek02. It shows no
delivery for the first 7 iterations of Release E and spikes of delivery for iterations 9

and 10; Release F shows an ‘Epic’ feature delivered in iteration 4 and very little else.

Figure 4: Geek02 Total Code Churn by Iteration

The variable code delivery shown in Figure 8 above suggests product backlog items

chosen for iterations do not fit well with the iteration length and there are difficulties
with planning and sizing the sprint backlog items; the sprint delivery highlights a

need to improve breakdown of product backlog items mindful of sprint duration.

Scrum inspect and adapt principles are designed to monitor variations in delivery and

8

make adjustments based on feedback from previous sprint experience. Figure 8

suggests the feedback from previous iterations is not informing future sprint

workload. When asked, Geek02 highlights two concerns:

• breaking down Epic stories

“I have done a REALLY bad job of taking the time to break EPIC

sized work into stories which neatly fit in a 1 week development
+ 1 week test cycle of „deliverable function‟ when the actual

project I‟m trying to accomplish takes 2-3 months to code and

unit test”;

• difficulty of delivering code that demonstrates customer value within a time

boxed iteration

“...some things are a) bigger than a couple of days coding and a

couple of days unit testing and b) have NO value without a

minimum amount being „done‟. Without at least 95% of the code

ready, there was nothing to test, by DEV OR QA. Some things are

just not practical to break up”.

4 Related work

None of the studies on Agile adoption [1] have applied quantative analysis to legacy
software development and maintenance. Agile adoption frameworks and strategies

discussed in the research literature show large organizations attempt both bottom-up

and top-down, ‘Start next Monday’ approaches [20], which involve wholesale

strategies (where the entire Agile practice is adopted at once) or incremental

strategies (where Agile practices are gradually deployed). The research literature

commonly considers the use of an incremental adoption approach consisting of an

evaluation and introduction stage assessing the ability of the organization to adopt

Agile methods, and the selection of suitable Agile practices based on organizational

context. Rohunen et al. [20] found this theoretical perspective does not show itself in

practice; in all participating industrial case studies , there was no formal

evidence-based evaluation stage; the only evidence of evaluation activity were some
industrial studies using retrospectives as a proxy initial evaluation process in their

initial incremental adoption process. Given adoption of Agile practices in large

software development organizations is not straightforward [9], it is perhaps surprising

that an evidence-based evaluation stage is not conducted aimed at determining if the

software project under consideration is a good Agile fit.

Kelly [13] suggests teams attempting to work outside the Agile sweet-spot are

blazing a trail and will face barriers, costs, and constrained benefits when attempting

Agile practices to Engineering, Management and Release practices. Despite these

concerns, a few experience reports in the research literature show practitioner

attempts to use (non-Scrum) Agile practices in legacy object-orientated [26], and

non-object-orientated environments [27, 2]. One paper considers how Agile practices
might be operationalised in an embedded software domain [21]. Whilst there is

anecdotal evidence published on Agile software development methods including

9

descriptive articles and lessons-learned [23, 19], there are not many empirical studies

on Agile adoption.

Studies of Scrum adoption were attempted on small companies as described by

Dingsoyr et al. [3] to large multinationals [8]. In addition, the Dyba & Dingsoyr [4]

systematic review of research literature found only one empirical study on customer

perception of Scrum using a web-based application written in C# [17]; as far as we

are aware, no empirical studies consider Scrum in a legacy context.

5 Conclusions

To assess the effects of transition to the Agile Scrum framework in a legacy context,

in this work, we have explored how Agile Scrum methods are adopted in industry

through a pilot longitudinal (spanning two years) quantitative exploratory case study.
A statistical analysis of the quantitative code metrics helped us to evaluate the

effectiveness of adoption of Scrum framework in the development and maintenance

of legacy software in a large organisation. An initial qualitative analysis was

conducted to discover factors hidden behind the statistical significances.

References

[1] Gabrielle Benefield. Rolling out agile in a large enterprise. In Proceedings of
the Proceedings of the 41st Annual Hawaii International Conference on System

Sciences, HICSS ’08, pages 461–, Washington, DC, USA, 2008. IEEE

Computer Society.

[2] G. Coleman and M. McAnallen. Managing the challenges of legacy systems

using extreme programming. Software Process: Improvement and Practice,

11(3):269–275, 2006.

[3] Torgeir DingsÃ¸yr, Geir Hanssen, Tore DybÃ¥, Geir Anker, and Jens Nygaard.

Developing software with scrum in a small cross-organizational project. In Ita
Richardson, Per Runeson, and Richard Messnarz, editors, Software Process

Improvement, volume 4257 of Lecture Notes in Computer Science, pages 5–15.

Springer Berlin / Heidelberg, 2006.

[4] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software

development: A systematic review. Inf. Softw. Technol., 50:833–859, August

2008.

[5] Tore Dyba, Barbara A. Kitchenham, and Magne Jorgensen. Evidence-based

software engineering for practitioners. IEEE Software, 22:58–65, 2005.

[6] M.C. Feathers. Working Effectively with Legacy Code. Pearson Education,

2004.

[7] Norman E. Fenton. Software Metrics: A Rigorous Approach. Chapman & Hall,

Ltd., London, UK, UK, 1991.
[8] Brian Fitzgerald, Gerard Hartnett, and Kieran Conboy. Customising agile

methods to software practices at intel shannon. Eur. J. Inf. Syst., 15:200–213,

April 2006.

[9] Paul Hodgetts. Refactoring the development process: Experiences with the

incremental adoption of agile practices. In Proceedings of the Agile

Development Conference, pages 106–113, Washington, DC, USA, 2004. IEEE

Computer Society.

10

[10] M. Huisman and J. Iivari. Deployment of systems development methodologies:

perceptual congruence between is managers and systems developers.

Information & Management, 43(1):29–49, 2006.

[11] IBM Inc. High level assembler for z/os release 6,

http://www-01.ibm.com/software/awdtools/hlasm/library.html#assembler, 2008.

Accessed 31 March 2011.

[12] Meena Jha and Piyush Maheshwari. Reusing code for modernization of legacy

systems. In Proceedings of the 13th IEEE International Workshop on Software
Technology and Engineering Practice, pages 102–114, Washington, DC, USA,

2005. IEEE Computer Society.

[13] A. Kelly. The limits of agile, 2010.

http://www.infoq.com/articles/limits-of-agile, [Accessed 20 March 2011].

[14] B. Kitchenham, L. Pickard, and S.L. Pfleeger. Case studies for method and tool

evaluation. Software, IEEE, 12(4):52 –62, jul 1995.

[15] M. Lindvall, V. R. Basili, B. W. Boehm, P. Costa, K. Dangle, F. Shull,

R. Tesoriero, L. A. Williams, and M. V. Zelkowitz. Empirical findings in agile

methods. In Proceedings of the Second XP Universe and First Agile Universe

Conference on Extreme Programming and Agile Methods - XP/Agile Universe

2002, pages 197–207, London, UK, 2002. Springer-Verlag.

[16] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael
Stupperich, David Kiefer, John May, and Tuomo Kahkonen. Agile software

development in large organizations. Computer, 37:26–34, 2004.

[17] Chris Mann and Frank Maurer. A case study on the impact of scrum on

overtime and customer satisfaction. In Proceedings of the Agile Development

Conference, pages 70–79, Washington, DC, USA, 2005. IEEE Computer

Society.

[18] Thomas J. McCabe. A complexity measure. In Proceedings of the 2nd

international conference on Software engineering, ICSE ’76, pages 407–, Los

Alamitos, CA, USA, 1976. IEEE Computer Society Press.

[19] Orlando Murru, Roberto Deias, and Giampiero Mugheddu. Assessing xp at a

european internet company. IEEE Software, 20:37–43, 2003.
[20] Anna Rohunen, Pilar Rodriguez, Pasi Kuvaja, Lech Krzanik, and Jouni

Markkula. Approaches to agile adoption in large settings: A comparison of the

results from a literature analysis and an industrial inventory. In Muhammad Ali

Babar, Matias Vierimaa, and Markku Oivo, editors, PROFES, volume 6156 of

Lecture Notes in Business Information Processing, pages 77–91. Springer,

2010.

[21] J. Ronkainen and P. Abrahamsson. Software development under stringent

hardware constraints: do agile methods have a chance? In Proceedings of the

4th international conference on Extreme programming and agile processes in

software engineering, XP’03, pages 73–79, Berlin, Heidelberg, 2003.

Springer-Verlag.
[22] Danilo Sato, Alfredo Goldman, and Fabio Kon. Tracking the evolution of

object-oriented quality metrics on agile projects. In Proceedings of the 8th

international conference on Agile processes in software engineering and

extreme programming, XP’07, pages 84–92, Berlin, Heidelberg, 2007.

Springer-Verlag.

[23] P. Schuh. Recovery, redemption, and extreme programming. Software, IEEE,

18(6):34 –41, Nov/Dec 2001.

11

[24] Judith Segal. The nature of evidence in empirical software engineering. In

Proceedings of the Eleventh Annual International Workshop on Software

Technology and Engineering Practice, pages 40–47, Washington, DC, USA,

2003. IEEE Computer Society.

[25] Vandana Shah and Ainsley Nies. Agile with fragile large legacy applications. In

Proceedings of the Agile 2008, pages 490–495, Washington, DC, USA, 2008.

IEEE Computer Society.

[26] Vandana Shah and Ainsley Nies. Agile with fragile large legacy applications. In
Proceedings of the Agile 2008, pages 490–495, Washington, DC, USA, 2008.

IEEE Computer Society.

[27] C. Stevenson and A. Pols. An agile approach to a legacy system. Extreme

Programming and Agile Processes in Software Engineering, pages 123–129,

2004.

[28] Norman G. Vinson and Janice Singer. A practical guide to ethical research

involving humans. In Forrest Shull, Janice Singer, and Dag I. K. Sjøberg,

editors, Guide to Advanced Empirical Software Engineering, pages 229–256.

Springer London, 2008.

[29] Horst Zuse. Software Complexity: Measures and Methods. Walter de Gruyter &

Co., Hawthorne, NJ, USA, 1990.

